2.2 Дериватография (термогравиметрия)

Метод дериватографии заключается в измерении потерь массы образцом ПМ в зависимости от величины и (или) скорости изменения температуры.

Для регистрации изменения массы используют высокочувствительные дериватографы, главными элементами которых являются прецизионные весы с точностью измерения 0,01 мг и высокоточное нагревательное устройство с программным регулятором температуры.

Термогравиметрию полимеров можно проводить в статическом режиме при заданной постоянной температуре и в режиме динамическом, когда температура изменяется с заданной скоростью.

Статический метод применяют, как правило, для оценки химических превращений в полимере во времени. Динамический метод используют значительно чаще, поскольку он позволяет оценить как структурные, так и химические изменения в полимере (переход из одного физического или фазового состояния в другое, деполимеризация, окисление), так и определить температуру начала и темп развития процессов деструкции.

Термогравиметрический анализ состоит, таким образом, в непрерывном фиксировании изменения массы нагреваемого образца и состояния его теплосодержания.

При оценке термостойкости сравнивают температуры начала потери массы (T0), потери массы в количестве 5% (Т5); 10% (Т10); 20% (Т20); 50% (Т50). При сопоставлении сведений по термостойкости пластмасс необходимо обязательно учитывать значение потери массы, при котором выполнено то или иное определение данного параметра.

Таким образом, термогравиметрический анализ позволяет решать комплекс практических задач — задачу идентификации ПМ, а также установление предельной температуры переработки пластмассы в изделия из расплава, оценка термостабильности расплава полимера, когда в нем не происходят химические изменения, выбор добавок для регулирования свойств полимера по их поведению при нагревании (добавки не должны претерпеть изменений при плавлении полимера).

2.3 Термосканирование

Метод предназначен для определения температуры и оценки фазовых переходов и других процессов, связанных с поглощением или выделением тепла. Теплосодержание вещества, отражаемое изменением температуры, регистрируемым прецизионными термопарами, размещенными в исследуемом образце и в эталоне из оксида алюминия, позволяет выполнить идентификацию ПМ по: температуре плавления, температуре стеклования, по наличию полиморфных переходов, по характеру проявления процесса плавления. Из перечисленных параметров наиболее доказательным является температура плавления, поскольку:

1) у каждого гомополимера, гомосополимера, олигомера и соолигомера свои индивидуальные температуры плавления;

2) введение добавок (кроме пластификаторов) в содержаниях до 2%, дисперсного наполнителя в содержании до 10–15% влияет на значение температуры плавления в узком её интервале;

3) введение пластификаторов всегда существенно понижает температуру плавления. Именно этот параметр является надежным идентификационным признаком при термосканировании.

Характер теплового эндопика может отражать и молекулярную полидисперсность полимера. Чем шире молекулярно-массовое распределение полимера, тем более «размытым» выглядит эндопик плавления на термограмме при совпадающем отсчетном значении температуры плавления.

 2.4 Термомеханика

Термомеханический анализ требует приготовления специальных образцов и, следовательно, такого количества идентифицируемого материала, которое иногда бывает сложно обеспечить, особенно если в распоряжении исследователя имеются лишь небольшие по массе и сложные по конфигурации детали. Однако во всех других случаях термомеханика позволяет получить надежные идентификационные сведения.

По термомеханическим кривым (ТМК) устанавливают следующие идентификационные признаки: аморфность или кристалличность полимера, при наличии образцовой ТМК устанавливают присутствие пластификаторов и наполнителей, определяют характеристические температуры, оценивают различия между собой разных партий пластмасс одного вида или марки.

Корректно построенные ТМК — это графические изображения функции деформации пластмассового образца от температуры (аргумент) в условиях постоянного по величине и виду напряжения. В этом случае ТМК отвечает требованиям формальной логики. Одновременно это означает, что при снятии ТМК должны соблюдаться ряд обязательных условий, а именно:

а) неизменность химического и физического строения полимера;

б) неизменность состава и морфологии композита;

в) завершенность релаксационных процессов (отсюда нормированная скорость подъема температуры);

г) постоянство вида и значения напряжения по всему объему образца.

Для оценки термомеханических свойств пластмасс при сжатии можно использовать консистометр Хеплера, твердомер с термокамерой и измененным узлом приложения нагрузки к образцу, несложные рычажные нагружающие устройства в комбинации с термокамерой. Деформация может замеряться упрощенно — индикатором часового типа, или более сложным способом с применением индукционных датчиков.

Образец в виде цилиндра диаметром d и высотой h = (1?1,5) d или призмы с плоскопараллельными торцами, установлен в измерительном узле прибора, и нагружен усилием, создающим напряжение сжатия s = const. Нагреватели прибора поднимают в измерительном узле температуру с заданной скоростью. Наблюдение за развитием деформации позволяет получить ТМК полимерного материала.

2.5. Капиллярная вискозиметрия

С помощью этого метода оценивают текучесть термопластичных ПМ. Сущность метода заключается в следующем. Гранулированный или порошковый ПМ загружается в камеру, в нижней части которой располагается шайба со стандартным капилляром ?2,095±0,015 мм. Корпус нагрет до определенной температуры, при которой ПМ расплавляется. Под действием пуансона, нагруженного также определенным усилием, расплав продавливается через капилляр в виде экструдата. Включают секундомер и по прошествии некоторого отрезка времени, обычно 10–20 с, отрезают выдавившийся экструдат. Далее взвешивают этот отрезок и, зная время его выдавливания, рассчитывают показатель текучести расплава ПТР. Условия определения ПТР стандартизованы.

Метод ПТР пригоден в том случае, когда вид идентифицируемого ПМ уже установлен. Однако в ряде случаев метод позволяет уточнить марку полимера, поскольку каждая из них, как правило, предназначена для определенного вида переработки (литье под давлением, экструзия пленок, экструзия труб, листов и т.д.) и имеет свой, отличающийся от других ПТР.

Например, в маркировке ПЭНП (ПЭВД) указывается давление при полимеризации (первая цифра), две последующие цифры обозначают метод производства базовой марки (автоклавный или трубчатый реактор); четвертая цифра указывает на способ усреднения полимера; пятая — на группу плотности ПЭНП. Важно, что цифры, расположенные после тире, указывают на значение ПТР, увеличенное в 10 раз.

Например, обозначение 10703-020 показывает, что это базовая марка ПЭНП (1), полученная автоклавным синтезом (07), усредненная холодным смешением (0) и с плотностью третьей группы (3). ПТР той марки — 2 г/10мин. Таким образом, например, оценив методом горения, что идентифицируемый ПМ — полиэтилен, мы по значению ПТР можем уточнить, какой он — литьевой или экструзионный.

Для оценки ПТР используются отечественные стандартизованные приборы ИИРТ-1, ИИРТ-2 и т.д. Отечественному методу оценки ПТР соответствует Европейский стандарт ISO 1133-76, американский ASTM D 1238-73, стандарт ФРГ DIN 537355.

 Издательство "Научные основы и технологии"